Eaton.com

xPole Home

New residential breaker range for protection and safety of your home RCBO Devices HNB-HX

AR518

B16/mu 003

Catalog

F:T-N

xPole Home

sg00818_r

Protective Devices

RCBO Devices HNB-HX xPole Home

1.1

Description

- High-quality residual current device / miniature circuit breaker combination, line voltage-independent
- Contact position indicator red green
- Basic range of accessories can be mounted subsequently
- 3-position DIN rail clip, permits removal from existing busbar system
- Rated currents up to 25 A
- Tripping characteristics B, C
- Rated breaking capacity 6 kA

sg00818_

Protective Devices

xPole Home

RCBO Devices HNB-HX xPole Home

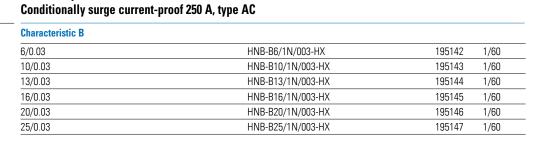
$I_n/I_{\Delta n}$	Type Article	No. Units per
(A)	Designation	package

Type A

6 kA, 1+N-pole

Characteristic B

Conditionally surge current-proof 250 A, sensitive to residual pulsating DC, type A


HNB-B6/1N/003-A-HX	195154	1/60
HNB-B10/1N/003-A-HX	195155	1/60
HNB-B13/1N/003-A-HX	195156	1/60
HNB-B16/1N/003-A-HX	195157	1/60
HNB-B20/1N/003-A-HX	195158	1/60
HNB-B25/1N/003-A-HX	195159	1/60
	HNB-B10/1N/003-A-HX HNB-B13/1N/003-A-HX HNB-B16/1N/003-A-HX HNB-B20/1N/003-A-HX	HNB-B10/1N/003-A-HX 195155 HNB-B13/1N/003-A-HX 195156 HNB-B13/1N/003-A-HX 195157 HNB-B16/1N/003-A-HX 195157 HNB-B20/1N/003-A-HX 195158

Cha 6/0

60	1/60
61	1/60
62	1/60
63	1/60
j4	1/60
i5	1/60
	5164 5165

sg00818_r

Characteristic C

Type AC 6 kA, 1+N-pole

Undracteristic U			
6/0.03	HNB-C6/1N/003-HX	195148	1/60
10/0.03	HNB-C10/1N/003-HX	195149	1/60
13/0.03	HNB-C13/1N/003-HX	195150	1/60
16/0.03	HNB-C16/1N/003-HX	195151	1/60
20/0.03	HNB-C20/1N/003-HX	195152	1/60
25/0.03	HNB-C25/1N/003-HX	195153	1/60

Specifications | RCBO Devices HNB-HX xPole Home

Description

- Combined RCD/MCB Devices
- Line voltage-independent tripping
- Compatible with standard busbar
- Twin-purpose terminal (lift/open-mouthed) above and below
- Busbar positioning optionally above or below
- Free terminal space despite installed busbar
- Contact position indicator red green
- Basic range of accessories can be mounted subsequently
- The test key "T" must be pressed every 6 month. The system operator must be informed of this obligation and his responsibility in a way that can be proven (self-adhesive RCD-label enclosed). The test intervall of 6 month is valid for residential and similar applications. Under all other conditions (e.g. damply or dusty environments), it's recommended to test in shorter intervalls (e.g. monthly).
- Pressing the test key "T" serves the only purpose of function testing the residual current device (RCD). This test does not make earthing resistance measurement (R_E), or proper checking of the earth conductor condition redundant, which must be performed separately.

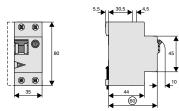
• **Type -A**: Protects against special forms of residual pulsating DC which have not been smoothed

ZP-IHK	286052
ZP-WHK	286053
ZP-NHK	248437
ZP-ASA/	248438, 248439
KLV-TC-2	276240
BB-UL-TEPA/35	169823
	ZP-WHK ZP-NHK ZP-ASA/ KLV-TC-2

Protective Devices

RCBO Devices HNB-HX xPole Home - Technical Data

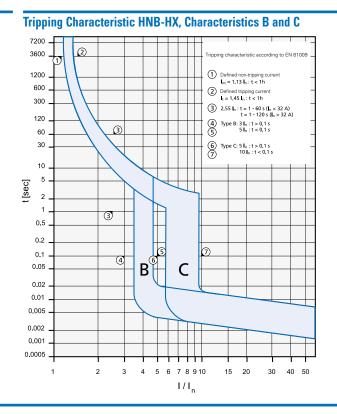
Technical Data


		HNB-HX, 1+N-pole
Electrical		•
Design according to		IEC/EN 61009
Current test marks as printed onto the device		
Line voltage-independent tripping		instantaneous 250 A (8/20 µs), surge current proof
Rated voltage	U _e	230 V AC; 50 Hz
Operational voltage range		196-253 V
Rated tripping current	I _{An}	30 mA
Rated non-tripping current		0.5 l _{An}
Sensitivity		AC and pulsating DC
Selectivity class		3
Rated breaking capacity	I _{cn}	6 kA
Rated current		6 - 25 A
Rated impulse withstand voltage	U	4 kV (1.2/50 μs)
Characteristic		B, C
Maximum back-up fuse (short circuit)		100 A gL (>6 kA)
Endurance		
electrical components		\geq 4,000 switching operations
mechanical components		\geq 20,000 switching operations
Mechanical		
Frame size		45 mm
Device height		80 mm
Device width		35 mm (2MU)
Mounting		3-position DIN rail clip, permits removal from existing busbar system
Degree of protection, switch		IP20
Degree of protection, built-in		IP40
Upper and lower terminals		open mouthed/lift terminals
Terminal protection		finger and hand touch safe, DGUV VS3, EN 50274
Terminal capacity		1 - 25 mm ²
Terminal torque		2 - 2.4 Nm
Busbar thickness		0.8 - 2 mm
Tripping temperature		-25°C to +40°C
Storage- and transport temperature		-35°C to +60°C
Resistance to climatic conditions		according to IEC/EN 61009
Climatic conditions		Acc. to IEC 68-2 (2555°C / 9095% RH)

Connection diagram

U/| | − 2 N

Dimensions (mm)



RCBO Devices HNB-HX xPole Home - Technical Data

Load Capacity HNB-HX

Effect of ambient temperature (MCB component)

		Ambient temperature T [°C]											
I _n [A]	-25	-20	-10	0	10	20	30	35	40				
6	7.4	7.2	7.0	6.7	6.5	6.3	6.0	5.9	5.8				
10	12	12	12	11	11	10	10	9.9	9.7				
13	16	16	15	15	14	14	13	13	13				
16	20	19	19	18	17	17	16	16	15				
20	25	24	23	22	22	21	20	20	19				
25	31	30	29	28	27	26	25	25	24				

Short Circuit Selectivity HNB-HX towards DII-DIV fuse link

In case of short circuit, there is selectivity between the combined RCD/MCB devices HNB-HX and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s , only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898-1 D.5.2.b

Short circuit selectivity Characteristic B towards fuse link DII-DIV*)

HNB-HX	DII-D	DII-DIV gL/gG									
I [A]	10	16	20	25	35	50	63	80	100		
6		< 0.51)	0.7	1.0	2.9	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾		
10			0.6	0.9	1.9	3.3	6.0 ²⁾	6.0 ²⁾	6.02)		
13			0.5	0.7	1.6	2.8	5.7	6.0 ²⁾	6.0 ²⁾		
16				0.7	1.4	2.4	4.4	6.0 ²⁾	6.02)		
20					1.3	2.2	4.0	6.0 ²⁾	6.0 ²⁾		
25					1.3	2.1	3.8	5.8	6.0 ²⁾		

Short circuit selectivity Characteristic C towards fuse link DII-DIV*)

HNB-HX	DII-DIV gL/gG										
I [A]	10	16	20	25	35	50	63	80	100		
6		< 0.51)	0.6	1.0	2.9	5.8	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾		
10			<0.5	0.7	1.5	2.6	5.3	6.02)	6.0 ²⁾		
13					1.4	2.3	4.6	6.02)	6.0 ²⁾		
16					1.2	1.8	3.4	5.5	6.0 ²⁾		
20					1.2	1.7	3.1	5.0	6.0 ²⁾		
25						1.6	2.9	4.6	6.0 ²⁾		

 $^{\scriptscriptstyle 1)}$ Selectivity limit current I_s under 0.5 kA.

 $^{2)}$ Selectivity limit current I_s = rated breaking capacity I_{cn} of the RCD/MCB device Darker areas: no selectivity

Short Circuit Selectivity HNB-HX towards D01-D03 fuse link

In case of short circuit, there is selectivity between the combined RCD/MCB devices HNB-HX and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s , only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898-1 D.5.2.b

Short circuit selectivity Characteristic B towards fuse link D01-D03*)

HNB-HX	D01-I	D03 gL/g	G						
I [A]	10	16	20	25	35	50	63	80	100
6		< 0.51)	0.5	0.8	2.4	6.02)	6.0 ²⁾	6.0 ²⁾	6.02)
10			0.5	0.8	1.6	3.7	6.0 ²⁾	6.0 ²⁾	6.02)
13			0.6	0.7	1.4	3.0	4.7	6.02)	6.0 ²⁾
16				0.6	1.2	2.6	3.9	6.0 ²⁾	6.0 ²⁾
20					1.2	2.5	3.6	6.0 ²⁾	6.0 ²⁾
25					1.2	2.3	3.3	5.7	6.0 ²⁾

Short circuit selectivity Characteristic C towards fuse link D01-D03*)

HNB-HX	D01-	D01-D03 gL/gG										
I [A]	10	16	20	25	35	50	63	80	100			
6		< 0.51)	< 0.51)	0.8	2.3	6.02)	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾			
10			<0.5	0.6	1.3	2.9	4.5	6.0 ²⁾	6.0 ²⁾			
13					1.2	2.5	3.9	6.02)	6.02)			
16					1.0	2.1	3.0	5.5	6.0 ²⁾			
20					1.0	2.0	2.7	5.0	6.0 ²⁾			
25						1.9	2.6	4.5	6.0 ²⁾			

Short Circuit Selectivity HNB-HX towards NH-00 fuse link

In case of short circuit, there is selectivity between the combined RCD/MCB devices HNB-HX and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s , only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898-1 D.5.2.b

Short circuit selectivity Characteristic B towards fuse link NH-00*)

Short circuit selectivity Characteristic C towards fuse link NH-00*)

HNB-HX	D01-D)03 gL/	gG							
l [A]	16	20	25	32	35	40	50	63	80	100
6	< 0.51)	0.5	0.8	1.4	2.2	3.3	6.02)	6.0 ²⁾	6.02)	6.02)
10		< 0.51)	0.7	0.9	1.5	2.1	3.4	4.3	6.02)	6.02)
13		< 0.51)	0.6	0.8	1.4	1.8	2.8	3.6	5.7	6.02)
16			0.6	0.7	1.2	1.5	2.4	3.0	4.5	6.0 ²⁾
20				0.7	1.1	1.5	2.2	2.8	4.2	6.0 ²⁾
25				0.7	1.1	1.4	2.1	2.6	4.0	6.02)

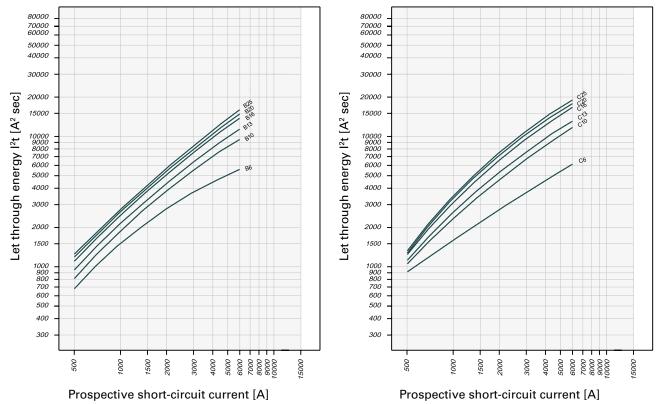
HNB-HX D01-D03 gL/gG 20 40 80 100 I [A] 16 25 32 35 50 63 <0.51) <0.51) 0.7 1.3 2.2 3.3 5.9 6.02) 6.02) 6.02) 6 10 0.5 0.8 1.2 1.7 2.7 3.4 5.5 6.0²⁾ 1.1 1.5 2.3 2.9 4.7 6.0²⁾ 13 1.0 1.3 1.8 2.3 3.7 6.0²⁾ 16 0.9 1.1 1.7 2.2 3.4 6.0²⁾ 20 25 1.6 2.1 3.2 6.0²⁾

 $^{\rm 1)}$ Selectivity limit current $\rm I_s$ under 0.5 kA.

 $^{2)}$ Selectivity limit current $\bar{l_s}$ = rated breaking capacity l_{cn} of the RCD/MCB device Darker areas: no selectivity

xPole Home

Protective Devices


RCBO Devices HNB-HX xPole Home - Technical Data

1.7

Let-through Energy HNB-HX

Let-through Energy HNB-HX, Characteristic B, 1+N-pole

Let-through Energy HNB-HX, Characteristic C, 1+N-pole

Eaton's electrical business is a global leader with deep regional application expertise in power distribution and circuit protection; power quality, backup power and energy storage; control and automation; life safety and security; structural solutions; and harsh and hazardous environment solutions. Through end-to-end services, channel and an integrated digital platform & insights Eaton is powering what matters across industries and around the world, helping customers solve their most critical electrical power management challenges.

For more information, visit Eaton.com.

Eaton Industries (Austria) GmbH Scheydgasse 42 1210 Vienna Austria

Eaton EMEA Headquarters Route de la Longeraie 7 1110 Morges, Switzerland

© 2021 Eaton All Rights Reserved Publication No. CA019023EN Article number 302616-MK July 2021

747 •

Powering Business Worldwide

Changes to the products, to the information contained in this document, and to prices are reserved; as are errors and omissions. Only order confirmations and technical documentation by Eaton is binding. Photos and pictures also do not warrant a specific layout or functionality. Their use in whatever form is subject to prior approval by Eaton. The same applies to trademarks (especially Eaton, Moeller, and Cutler-Hammer). The Terms and Conditions of Eaton apply, as referenced on Eaton Internet pages and Eaton order confirmations.

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

0

6

Follow us on social media to get the latest product and support information.

